
Toward scalable solvers for 
generalized n-body problems

Georgia Tech

– Aparna Chandramowlishwaran, Ilya Lashuk, Ryan Riegel, 
Aashay Shringarpure; George Biros, Alex Gray, Rich Vuduc

Lawrence Berkeley National Laboratory

– Sam Williams, Lenny Oliker

Los Alamos Computer Science Symposium 2009

1



Key Ideas and Findings

First cross-platform single-node multicore study 
of tuning the fast multipole method (FMM)

Explores data structures, SIMD, multithreading, 
mixed-precision, and tuning

Show 25x speedups on Intel Nehalem,
9.4x AMD Barcelona, 37.6x Sun Victoria Falls

Surprise? Multicore ~ GPU in performance & 
energy efficiency for the FMM

Broader context: Generalized n-body problems, 
for particle simulation & statistical data analytics
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Context:
Mathematical & programming model foundations 
for generalized n-body problems (GNP)
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Context:
Interaction calculations

What do these have in common?

Consider pairs of points – naïvely O(N2)

Force computation

All nearest neighbors

Kernel density estimation

Range count

∀q ∈ Q : F (q) =
�

r∈(Q−{q})

C
r − q

||r − q||3

∀q ∈ Q : AllNN(q) = argminr∈R d(q, r)

∀q ∈ Q : KDE(q) =
1

|R|
�

r∈R

K(q, r)

∀q ∈ Q : Range(q) =
�

r∈R

I(dist(q, r)) ≤ h)
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Commonality: Optimal 
approximation algorithms

Hierarchical tree-based approximation algorithms 
for force computations, e.g., Barnes-Hut or FMM

Force computation∀q ∈ Q : F (q) =
�

r∈(Q−{q})

C
r − q

||r − q||3

Evaluate interactions
→ Tree traversals

Store aggregate data at
nodes, e.g., bounding box,
mass
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Programming model?

Force computation∀q ∈ Q : F (q) =
�

r∈(Q−{q})

C
r − q

||r − q||3
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Programming model?

Force computation∀q ∈ Q : F (q) =
�

r∈(Q−{q})

C
r − q

||r − q||3

Φ(Q) ≡ map
q∈Q

�

r∈(Q−{q})

C
r − q

||r − q||3 MapReduce-like

Write in a more suggestible form
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Programming model:
THOR

Write in a more suggestible form

Idea: Tree-based High-Order Reduce (THOR)

Provide MapReduce-like programming model

Implementations use fast algorithms

Force computation∀q ∈ Q : F (q) =
�

r∈(Q−{q})

C
r − q

||r − q||3

Φ(Q) ≡ map
q∈Q

�

r∈(Q−{q})

C
r − q

||r − q||3 MapReduce-like

R. Vuduc, A. Gray – NSF HECURA
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Generalized n-body 
problems (GNPs)

General “query-reference” form:

Simple form, I = J = 1:

End-user programmer fills in green stuff

∀q ∈ Q : GNP(q) = g(q,
�

r∈R

f(q, r))

∀q1 ∈ Q1, . . . , qI ∈ QI :

GNP(q1, . . . , qI) = g(q1, . . . , qI ,
�

r1∈R1

· · ·
�

rJ∈RJ

f(q1, . . . , qI , r1, . . . , rJ))

R. Vuduc, A. Gray – NSF HECURA
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Main research questions

[Math/algorithms] Optimal approximation 
algorithms with accuracy guarantees?

[Programming models] How to best express such 
methods at a “high-level?”

[Implementation] How to translate from high-level 
to efficient low-level?

Big data motivates fast (optimal) algorithms

O(N) is good, but constant matters!

Best architectures? Data structures? Numerics? 
Tuning?

R. Vuduc, A. Gray – NSF HECURA
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High-performance multicore FMMs:
Analysis, optimization, and tuning

Algorithmic characteristics

Architectural implications

Observations

A. Chandramowlishwaran, S. Williams, L. Oliker, I. Lashuk, A. Shringarpure, G. Biros, R. Vuduc – NSF HECURA; PetaApps
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Direct evaluation: O(N2) Barnes-Hut: O(N log N)

Fast Multipole Method (FMM): O(N)

Computing Direct vs. Tree-based Interactions
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Given:

N target points and N sources

Tree type & max points per leaf, q

Desired accuracy, ε
Build tree

Evaluate potential at all N targets

Upward pass, “interact” node with parent

Downward pass, interact parent with children

Perform U-, V-, W-, and X-list interactions

Fast multipole method

We use kernel-independent FMM (KIFMM) of Ying, Zorin, Biros (2004).
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Tree construction Recursively divide space until
each box has at most q points.
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Evaluation phase

B

X

X

V

V

V V V V

V V
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Six phases:
(1.) Upward pass
(2–5.) List computations
(6.) Downward pass

Phases vary in:
→ data parallelism
→ intensity (flops : mops)

Given the adaptive tree, FMM evaluation performs a 
series of tree traversals, doing some work at each 
node, B.
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Evaluation phase
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Given the adaptive tree, FMM evaluation performs a 
series of tree traversals, doing some work at each 
node, B.

Six phases:
(1.) Upward pass
(2–5.) List computations
(6.) Downward pass

Phases vary in:
→ data parallelism
→ intensity (flops : mops)
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U-List
UL(B: leaf) :- neighbors (B)

UL(B: non-leaf) :- empty
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Direct B⊗U:
→ O(q2) flops : O(q) mops

18



V-List VL(B) :- child (neigh (par (B))) - adj(B)
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V V
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V V
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X

X

W W W W

W

U
U
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U
U

In 3D, FFTs + pointwise 
multiplication:
→ Easily vectorized
→ Low intensity vs. U-list
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W-list
WL(B: leaf) :- desc [par (neigh (B)) ∩ adj (B)] - adj (B)

WL(B: non-leaf) :- empty
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Moderate intensity
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X-list XL(B) :- {A : B ∈ WL(A)}
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Moderate intensity
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Essence of the 
computation
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Parallelism exists:
(1) among phases, with 
some dependencies;
(2) within each phase;
(3) per-box.

Do not currently exploit (1).
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Essence of the 
computation

B

X

X

V

V

V V V V

V V

V V

V V

V V

V V

W W W W

W

U
U

U U

U

U
U

Large q implies
→ large U-list cost, O(q2)
→ cheaper V, W, X costs 
(shallower tree)

Algorithmic tuning 
parameter, q, has a global 
impact on cost.
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Essence of the 
computation

KIFMM (our variant) 
requires kernel evaluations 
with expensive flops

For instance, square-root and divide are 
expensive, sometimes not pipelined.

K(r) =
C√
r
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High-performance multicore FMMs:
Analysis, optimization, and tuning

Algorithmic characteristics

Architectural implications

Observations

A. Chandramowlishwaran, S. Williams, L. Oliker, I. Lashuk, A. Shringarpure, G. Biros, R. Vuduc – NSF HECURA; PetaApps

25



(2-socket) x (8-core / socket)

(2-socket) x (4-core / socket)

(2-socket) x (4-core / socket)

Sun T5140 “Victoria Falls”

AMD Opteron 2356 “Barcelona”

Intel X5550 “Nehalem”

Hardware thread and core configurations

How do they differ? What implications for FMM?
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2 x 8 x 8-thr/core → 128 threads

2 x 4 x 1-thr/core → 8 threads

2-sockets x 4-cores/socket x 2-thr/core → 16 threads

Sun T5140 “Victoria Falls”

AMD Opteron 2356 “Barcelona”

Intel X5550 “Nehalem”

Hardware thread and core configurations

FMM has fine-grained thread-level parallelism, assuming sufficient functional units.
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1.166 GHz cores, in-order, shallow pipeline.

Fast 2.3 GHz cores, out-of-order, deep pipelines.

Fast 2.66 GHz cores, out-of-order, deep pipelines.

Sun T5140 “Victoria Falls”

AMD Opteron 2356 “Barcelona”

Intel X5550 “Nehalem”

Single core configuration
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No SIMD → 18.66 Gflop/s in single & double

SIMD → 73.6 (double), 146.2 (single) Gflop/s

SIMD → 85.5 (double), 170.6 (single) Gflop/s

Sun T5140 “Victoria Falls”

AMD Opteron 2356 “Barcelona”

Intel X5550 “Nehalem”

SIMD

FMM can use SIMD well, so expect good performance on x86.
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2.26 Gflop/s

0.897 (double), 73.6 (single) Gflop/s

Reciprocal square-root:
0.853 (double), 42.66 (single) Gflop/s

Sun T5140 “Victoria Falls”

AMD Opteron 2356 “Barcelona”

Intel X5550 “Nehalem”

Floating-point limitations

However, x86 has fast approximate single-precision rsqrt, exploitable in double.
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4 MB L2
64.0 GB/s bandwidth

Smaller (2 MB) L3 cache
Lower (21.33 GB/s) bandwidth

Large (8 MB) L3 cache
High (51.2 GB/s) bandwidth

Sun T5140 “Victoria Falls”

AMD Opteron 2356 “Barcelona”

Intel X5550 “Nehalem”

Memory systems

FMM has a mix of memory behaviors, so memory system impact will vary.
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610 W

350 W

375 W

Sun T5140 “Victoria Falls”

AMD Opteron 2356 “Barcelona”

Intel X5550 “Nehalem”

Max System Power
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High-performance multicore FMMs:
Analysis, optimization, and tuning

Algorithmic characteristics

Architectural implications

Observations
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Single-core, manually coded & tuned

Low-level: SIMD vectorization (x86)

Numerical: rsqrtps + Newton-Raphson (x86)

Data: Structure reorg. (transpose or “SOA”)

Traffic: Matrix-free via interprocedural loop fusion

FFTW plan optimization

OpenMP parallelization

Algorithmic tuning of max particles per box, q

Optimizations
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Nehalem 

Single-core Optimizations
Ns = Nt = 4M, Double-Precision, Non-uniform (ellipsoidal)

+Matrix-Free 

  Computation 

+Structure of Arrays +Newton-Raphson 

  Approximation 

+SIMDization +FFTW 

Reference: kifmm3d [Ying, Langston, Zorin, Biros]
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+Matrix-Free 

  Computation 

+Structure of Arrays +Newton-Raphson 

  Approximation 

+SIMDization +FFTW 
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Nehalem 

SIMD: ~ 1.2 – 1.8x

Single-core Optimizations
Ns = Nt = 4M, Double-Precision, Non-uniform (ellipsoidal)
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+Matrix-Free 

  Computation 

+Structure of Arrays +Newton-Raphson 

  Approximation 

+SIMDization +FFTW 
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Nehalem 

Cumulatively, ~ 3x from SIMD+“smarter numerics”

Single-core Optimizations
Ns = Nt = 4M, Double-Precision, Non-uniform (ellipsoidal)
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+Matrix-Free 

  Computation 

+Structure of Arrays +Newton-Raphson 

  Approximation 

+SIMDization +FFTW 
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Nehalem 

Better memory performance + SIMDization, at small cost (“Tree”).

Single-core Optimizations
Ns = Nt = 4M, Double-Precision, Non-uniform (ellipsoidal)
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+Matrix-Free 

  Computation 

+Structure of Arrays +Newton-Raphson 

  Approximation 

+SIMDization +FFTW 

-100% 

0% 

100% 

200% 

300% 

400% 

500% 

600% 

T
re

e
 

U
p

 

U
 l
is

t 

V
 l
is

t 

W
 l
is

t 

X
 l
is

t 

D
o

w
n

 

sp
e
e
d

u
p

 

Nehalem 

SOA+Matrix-free (memory system optimizations) ⇒ > 2x

Single-core Optimizations
Ns = Nt = 4M, Double-Precision, Non-uniform (ellipsoidal)
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+Matrix-Free 

  Computation 

+Structure of Arrays +Newton-Raphson 

  Approximation 

+SIMDization +FFTW 
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“Trick” to improve reduce cost of FFTW plan construction

Single-core Optimizations
Ns = Nt = 4M, Double-Precision, Non-uniform (ellipsoidal)
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Nehalem
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+Matrix-Free 

  Computation 

+Structure of Arrays +Newton-Raphson 

  Approximation 

+SIMDization +FFTW 

Less impact on Barcelona (why?) and Victoria Falls.

~ 4.5x ~ 2.2x ~ 1.4x

Single-core Optimizations
Ns = Nt = 4M, Double-Precision, Non-uniform (ellipsoidal)
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Algorithmic Tuning of q = Max pts / box
Nehalem

Tree shape and relative component costs vary as q varies.
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Algorithmic Tuning of q = Max pts / box
Nehalem

Shape of curve changes as we introduce optimizations.
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Algorithmic Tuning of q = Max pts / box
Nehalem

Shape of curve changes as we introduce optimizations.

168 

10.4 
0 

100 

200 

300 

400 

500 

600 

50 100 250 500 750 

S
e
co

n
d

s 

Maximum Particles per Box 

Force Evaluation Only 

Reference Serial 

Optimized Serial 

Optimized Parallel 

44



Algorithmic Tuning of q = Max pts / box
Nehalem
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Why? Consider phase costs for the “Optimized Parallel” implementation.
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Recall: Cost(U-list) ~ O(q2) per box
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Algorithmic Tuning of q = Max pts / box
Nehalem
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A more shallow tree reduces cost of V-list phase.

0.0 

2.0 

4.0 

6.0 

8.0 

10.0 

12.0 

14.0 

50 100 250 500 750 

S
e
co

n
d

s 

Maximum Particles per Box 

Breakdown by List 

U list 

V list 

BV

V

V V V V

V V

V V

V V

V V

V V

X

X

W W W W

W

U
U

U U

U

U
U

Algorithmic Tuning of q = Max pts / box
Nehalem
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Computational intensity of W, X more like U than V.
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Optimal q will vary as the point distribution varies.
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Multicore Scalability over Optimized Baseline
Ellipsoidal Distribution

Need to improve tree construction. Little benefit from SMT.
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New tree constructed for every force evaluation asymptotic limit (force evaluation time only) 

~ 6.3x ~ 4.3x ~ 24x
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Efficiency, via Parallel Cost – p⋅Tp

Uniform Distribution

Nehalem
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Efficiency, via Parallel Cost – p⋅Tp

Uniform Distribution

Nehalem
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GPU comparison:
NVIDIA T10P

Our prior work on MPI+CUDA
Lashuk, et al., SC’09

System: NCSA Lincoln Cluster

Dual-socket Xeon

1 node, 1 MPI task per socket & GPU 
(tasks mostly idle)

1- and 2-GPU configs

Single-precision only for now

12x compute + 5x bandwidth
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Single Precision 

Cross-Platform Performance Comparison (Summary)

Reference +Optimized +OpenMP +Tree Construction

   Amortized

Energy assuming CPU

consumes no power

Nehalem outperforms 1-GPU case, a little slower than 2-GPU case.
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Single Precision 

Cross-Platform Performance Comparison (Summary)

Reference +Optimized +OpenMP +Tree Construction

   Amortized

Energy assuming CPU

consumes no power

Nehalem outperforms 1-GPU case, a little slower than 2-GPU case.

Nehalem =
  1.7x 1-GPU
  0.9x 2-GPU
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Single Precision 

Cross-Platform Performance Comparison (Summary)

Reference +Optimized +OpenMP +Tree Construction

   Amortized

Energy assuming CPU

consumes no power

Nehalem outperforms 1-GPU case, a little slower than 2-GPU case.

Nehalem =
  1.5x 1-GPU
  0.75x 2-GPU
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Cross-Platform Energy-Efficiency Comparison
(Watt-Hours) / (Nehalem+OpenMP Watt-Hours)

Reference +Optimized +OpenMP +Tree Construction

   Amortized

Energy assuming CPU

consumes no power

Nehalem has same or better power efficiency than either GPU setup.
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Summary and Status

First extensive multicore platform study for FMM

Show 25x Nehalem, 9.4x Barcelona, 37.6x VF from 
algorithmic, data, and numerical tuning

Multicore CPU ~= GPU in power-performance

Short-term:

Perform more detailed modeling → autotuning

Build integrated MPI+CPU+GPU implementation

Parallel tree construction

Long-term: Generalize infrastructure and merge with 
on-going THOR effort for data analysis
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